Greenhouse Gases
How do Greenhouse Gases Work?
As solar energy radiates away from the sun, it is intercepted by different objects in space. One such object, located 150,000,000 kilometers away from the light source, is Earth. When the earth intercepts radiation from the sun, most of it is absorbed by the land and the oceans in the form of heat energy. This energy is then released by the Earth and re-emitted back into space (we know this because if it was not the case then the Earth would be continuously warming up from the sun’s energy).When this energy is released, a portion of it is absorbed by greenhouse gases in the atmosphere. This is important because the energy is then re-emitted from the gases back towards the surface. This phenomenon is known as the ‘Greenhouse Effect’, and without it, Earth’s average surface temperature would consistently be almost 20 degrees below zero; 35 degrees colder than it is now, and completely unable to support life.
Historic GHG Concentrations
Scientific research has shown that over the course of our planet’s history, Earth’s surface and climate have gradually fluctuated between warm and cold temperatures. This explains how dinosaurs (large, cold-blooded reptiles) were able to survive from pole to pole during the Mesozoic era. Using ice cores to determine pre-historic concentrations of carbon dioxide in the atmosphere, scientists have determined that these temperature cycles are strongly correlated to atmospheric greenhouse gas levels. Essentially, as the atmospheric concentration of greenhouse gases increases, more energy radiating from the Earth is trapped, and the climate gets warmer. These patterns fluctuate from hot to cold climates over long timescales of hundreds of thousands of years.Historic shifts between hot and cold climates are often used as an argument to justify the claim that climate change is “not caused by human activity”. This argument fails to comprehend the timescales at which global climate change occurs. Over the past 400,000 years, the concentration of atmospheric CO2 has cycled about five times between 180 parts per million (ppm), and approximately 300 ppm. These cycles generally took between 75,000-100,000 years. However, in the past 250 years (since the Industrial Revolution), where we would expect to see the beginning of a decline in atmospheric CO2, we instead observe a dramatic increase. In fact, since 1750, atmospheric CO2 has increased 45% from 280 ppm to over 406 ppm. This is the first time in over 400 millennia that it has surpassed 400 parts per million.
It is widely understood (and accepted) that this incredible increase in carbon dioxide concentration is the result of greenhouse gas emissions produced largely by fossil fuel use. Human societies rely on fossil fuels for many different purposes, like electricity generation, transportation, and industrial processes. In the City of Maple Ridge, GHG emissions are produced when we operate municipal cars, fire trucks, street sweepers and lawn mowers, light up sports fields, municipal hall, and streetlights, and heat municipal swimming pools and buildings
The greenhouse effect is why so many discussions surrounding climate change mitigation involve reducing greenhouse gas emissions. By reducing the carbon footprint of institutions, organizations, and individuals, we help slow the rapid accumulation of GHGs in the atmosphere.
By 2020, the BC Government has committed to reduce its GHG emissions by 33%, compared to 2007 levels. This target has been adopted by Maple Ridge into the Official Community Plan. The Community Energy and Emissions Inventory (CEEI) is an initiative of the BC Ministry of Environment intended to track GHG emissions activities in the community. Tracking emissions provides important information that can be used to plan strategies that help mitigate climate change.
Maple Ridge has also committed to reducing our corporate GHG emissions 33% by 2020 and 80% by 2050 (from 2007 levels). Measuring our progress is an important part of ensuring reduction of energy consumption and the corresponding greenhouse gases through maintenance, procedural, mechanical and behavioural changes as we work towards becoming carbon neutral.